<u>APPENDIX IC:</u> <u>SYLLABUS FOR 20 BME 2010 RESEARCH METHODS IN</u> <u>BIOMEDICAL ENGINEERING (SUMMER SEMESTER 2014)</u>

Course Description: Required for all Biomedical Engineering students

Catalog Description: This course will help students to develop methods and skills necessary to create, develop and execute a successful research project. The material covers an introduction in the scientific methods with in depth discussion of case studies from several topics of biomedical engineering.

Prerequisites: Differential Equations; Introductory computer programming. BIOL1081L &CHEM1041L Or 15BIOL101 & 15BIOL111 & 15CHEM101 & 15CHEM111

Required Texts:

- 1) A Beginner's Guide to Scientific Method, 4th Edition by Stephen S Carey, Wadsworth Cengage Learning, c2012
- 2) Introduction to Biomedical Engineering [electronic resource] / [edited by] John Enderle, Joseph D. Bronzino, Academic Press, c2012
- 3) Matlab

Optional Reading:

- 1) The art of scientific investigation, William IB Beveridge, Blackburn Press, 2004
- 2) Biomedical engineering [electronic resource] : bridging medicine and technology / W. Mark Saltzman, Cambridge University Press, 2009
- The biomedical engineering handbook [electronic resource] / edited by Joseph D. Bronzino, CRC/Taylor & Francis, 2006

Instructor:

Dr. Vasile Nistor 858 ERC 556-2521 <u>nistorve@ucmail.uc.edu</u> Office Hours: 2:00-2:45pm MW, or by appointment

Learning Objectives: Upon completion of this course, students will be able to:

- 1. Communicate legal and ethical issues in biomedical research.
- 2. Overview the stages of a research project from proposal through to publication, and processes used to evaluate the research.
- 3. Demonstrate written and oral scientific communication skills.
- 4. Perform appropriate statistical analyses on biomedical data.
- 5. Give an account of evidence-based medicine and clinical audit.

Class Schedule: Class meets MWF at 1:00 – 2:00, RECCENTR 3230

Attendance Policy: Attendance is not required but strongly recommended.

Grading Policy:

- Weekly Quiz: 25%
- Midterm Exam #1 25%
- Midterm Exam #2 25%
- Final Exam 25%

Missed Exam Policy: Students will not be allowed to make up a missed exam unless he/she has provided an excusable absence prior to the exam date.

Schedule of Lectures and Reading Materials

Date	Торіс	Examinations
May 12	Class organization	
	The Scientific Method	
	Science & Observation	
	Explanation & Experimentation	Q1
	Establishing causal links	
	Fallacies in Science	
May 28	Midterm Exam #1	MT1
	Moral and Ethical issues	Q2-Q5
	Anatomy and Physiology	
	Biomechanics	
	Biomaterials	
	Tissue Engineering	
	Compartmental modeling	
July 2	Midterm Exam #2	MT2
	Biochemical reactions and enzyme kinetics	Q6-Q7
	Bioinstrumentation and Sensors	
	Bioelectric phenomena and signal processing	
	Biomedical mass transport	
	Radiation and Medical Imaging	
July 30	Final Exam	Final